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Toroidal Resonators and Waveguides of
Arbitrary Cross Section

FERDINAND CAP

A bstract— After introducing a new method to solve Maxwell’s equations
"using a complex electromagnetic field vector F, a rotational coordinate
system £, 0, @ is introduced. In this coordinate system, the field vector
components F;, F; may be expressed by F,. This component can be
obtained from a two-dimensional Helmholtz equation. Specifying £, § by
cylindrical coordinates r, z the complex Maxwell equation curl F=vF is
solved for the axisymmetric case (3/39=0) and for the nonsymmetric
case. The differential equations for magnetic field lines are solved and
surfaces on which the normal component of B and the tangential compo-
nents of E vanish are recognized as metallic walls of toroidal resonators of
various arbitrary cross sections. In the Appendix the results of the new
method are compared with well known results for circular cylindrical
waveguides.

1. INTRODUCTION

OROIDAL RESONATORS having a high Q-value
are of interest not only for microwave engineering, but
also for light pipes and for the heating of toroidal plasmas
by low-frequency electromagnetic waves. We have recently
published solutions to Maxwell’s equations for a torus with
circular cross section [1], [2]. On the other hand it seems to
be of interest to investigate also toroidal resonators and
curved waveguides of arbitrary, e.g., elliptic or triangular
cross section. Such cross sections are of interest, e.g., in
plasma physics. In order to solve Maxwell’s equations for a
torus of arbitrary cross section we first present a new
method to solve Maxwell’s equations and the vector
Helmholtz equation for arbitrary rotational coordinates.
The new method consists of three steps: 1) a complex
electromagnetic field is defined in order to simplify
Maxwell’s equations; 2) for rotational coordinate systems
describing three-dimensional toroidal configurations of ar-
bitrary cross section, Maxwell’s equations are solved by
expressing two components of the complex electromagnetic
fields by the third component; and 3) from the vector
Helmholtz equation for the field first a fourth-order equa-
tion for the third field-component is derived which is then
reduced to a second-order scalar Helmholtz equation. This
equation is then solved for various practical examples.

II. CoMPLEX SIMPLIFICATION OF MAXWELL’S
EQUATIONS

For a time-dependence ~exp(iw?) Maxwell’s equations
may be written for vacuum

curl E=iwB (1)
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@)
(3)
(4)

For waveguides and empty resonators we have the
boundary conditions

curl B=¢ypyiwE
divE=0
divB=0.

B,=0

(5)
where B, is the magnetic component normal to the metallic
wall, and

E,=0

(6)
where E, is the electric component tangential to the highly
conducting wall. Introducing a complex electromagnetic

field F by
F=E—iB/\eop (7)

and adding (1)+(2) as well as (3)+(4) we may write
Maxwell’s equation in the compact complex form

(8)
©)
(By the way, if F is replaced by B, these equations are
identical with the equations describing force-free plasma
containment [4]).

A reviewer who has been so kind to evaluate this paper

has drawn our attention to the fact that the use of a
complex field vector were not new. It had been discussed in

curl F=wyeguny F
divF=0.

‘Stratton, Electromagnetic Theory, a book not available here

in Innsbruck. A second reviewer has been so kind to
suggest the use of bicomplex variables. It is the feeling of
the author that this could yield a more flexible and elegant
way but would give the same results. Anyway, both re-
viewers are thanked for their remarks.

Due to (9) we may make the ansatz

F=curl P+wyeyu, P (10)
divP=0 (11)

where the complex vector P is nothing else than
—iA / [€;y , where A is the usual magnetic vector poten-
tial. It is easy to show that E, B, F, and P satisfy a vector

Helmholtz equation ,
v 2+ o pn  F=0 (12)
V 2P+ weyuy P=0. (13)

This is, however, not of interest for the following,.
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III. ROTATIONAL COORDINATE SYSTEM

We now introduce three-dimensional curvilinear orthog-
onal rotational coordinates £, 8, p related to Cartesian co-
ordinates by

x=g(&,0)cosgp
y=g(&,0)sing
z=1(&,0). (14)

See Fig. 1.

The functions g(&, ), I(¢, 6) will be specified later. They
describe the arbitrary cross section of the torus. The system
£,6,¢ is obtained by rotation around the z-axis of the
two-dimensional system £, 6. ¢ is the rotation angle. The
scale factors are given by

- 2 ) 8
(15)

5 5 505 (8

(8 (3 (35 -

(16)

(17)
According to Zagrodzinski [3] we now assume that the
toroidal cross section can be generated by conformal map-
ping of the x, z-plane on the £, f-plane or that {+i60=f(g
+il)=f(x+iz), such that g and / satisfy the Cauchy-
Riemann equations

dg _ ol dg_ o
FrAREY 90~ 3¢ (18)

We then have from (15), (16)
dg ( 3g)
2 2
W= 3 g) +(2) op.

Furthermore we obtain from (18), (19) the results

S U A B A O U VA
wean’=5.5¢) + (5, 38) + (5 =

I

(19)

(20)

(grad b, )= (grad g)’= (21)
and

vih,=vig=g~ L (22)

Since Maxwell’s equations are linear and since their
solution must be periodic in ¢, we assume for all compo-
nents of F a p-dependence ~2, A, exp(im ¢). By combin-
ing linearly the three components of (8) we obtain in
analogy to [3] the following equations for the first two
components:

1 J9F g 0F, g

_ L . 958
Fe= g | Tim—5g ~8weoko 54~

(23)
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Fig. 1. Rotational coordinates.
and’
1 (. 0Fg — 0
F0 Mh( +gw €olbo —qg ag ) (24)

where M=g%w%,p, —m? and where g, & are given by the
form of the arbitrary toroidal cross section. We are thus
able to calculate F; and Fy, if F, is known. If F; and F, are
inserted into the third component equation of (8) or into
(9), a very complicated equation of second order contain-
ing only F, can be derived (seg, e.g., (40)). This equation is
not of the form of a scalar Helmholtz equation. There is,
however, a more simple way to find F,.

IV. HELMHOLTZ EQUATION FOR Fq,.

According to [3] we consider the azimuthal component
F, and decompose it into Cartesian components

F,=—F sing+F,cos g. (25)
Application of v 2 to (25) yields
V’F, = —(&%eopy +8?)F,
B
— -2 X Y
287 50 7y (26)
Differentiating (25) with respect to ¢ we obtain
aF, _dF, dF,
—% = (27)
o 6q> 8q>

where
F.=F.cosp+Fsing

(28)

is the radial component in cylinder coordinates 7, z, p. On
the other hand

oF, _ oF, oF,
aq)’:Wcosq>+—®smq>+F (29)
50 that (26) may be written
%gz(sz-I-wzeo,uOFq)—g_sz):—imF,. (30)
Similarly application of v 2 on (28) yields
38*(V2F +wuoF,~g "2F)=imF,.  (31)
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_ Elimination of F, and use of v>=v3—g ™ *m? yields an
equation of fourth order for F,
[(v3—g72m* +weono—g )
(V35 i +weguo—g ?)
—4g _4m2] F,=0

1 ]9 d i d
2 = — ——— —_— —_— —
Vi hzg[as (gag) * 20 (gae)]‘ (33)
Thus, according to (32) F,=C,F," +C,F,” is determined
by the two scalar Helmholtz equations
VIEY +wop F,t —g A (m+ 1)21‘7‘10“L =0

(32)

where

(34)
(35)

V3F, tweonoF, —g—z(m—l)qu,_ =0

and by the boundary conditions (5), (6).

The constants C,, C, must be determined in such a way
that F, given by (34), (35) and F;, F; given by (23), 24)
satisfy (8), (9).

V. CYLINDRICAL COORDINATES

To solve the equations (34)—(35) we now must specify
the coordinate system. If we chose quasitoroidal coordi-
nates p, 8, p by g=Rn, h=Rp,I=Rpsinf,n=1—pcosd we
obtain a torus with exactly circular cross section and we
come back to the problem investigated in [1], [2]. Since
equation (34) is not separable in these coordinates even for
m=0 [4] we again have to use series approximations. We
therefore choose now a coordinate system in which (34) is
separable. In cylinder coordinates r,z,¢ we have {=r,
0=z, =9 and g=r, =z, h=1. For the z-dependence we
choose exp(ikz). Then (34), (35) read

d*F}; 1 dF,;*
dr? rodr

-i-(yz—kZ)Fi -

v~ Ly
(36)

where y?=w%gpy. The solution F,=C,F," +C,F, is
given by

E(r)=[C.Zp (W2 =K 1) +C,Z,_ (WP —Kr)].
(37)

Here the Z, are cylindrical functions. Sums over m and k
are omitted. From (23) and (24) we obtain

o _ OrF,  OrF,
E_r272—m2 [zm 5 Y, (38)

_ 1 ) arFq, aer
Fz_rzyz__mz [1m 3z "% | (39)

Inserting (37)—(39) into (8) we find that the r and
z-components are identically satisfied, but the p-component
yields for a z-dependence exp(ikz) (‘=d/dr)

77 1 4 1
F)+—F +F (v’ —k*)+ ;EFw(l—mz)—

2m? K
NN
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According to Section IV, this equation must have the
same solution as (8) and (36) if the constants C, and C, are
chosen appropriately. To see this we solve (8) in cylindrical
coordinates:

Fq,=Amke"”"’+’kz[—mTkZm( y>—k*r)
—vz, (k)] @
F,:Amkze'mq’*'“[+ Yz (v —k>r) -
+kz,((—k2r)| (@)
F=A,emot | (v =k2)Z, (=K r)] | (43)
Identifying (41) with (37) and using
z, (W =kr)=\y Kz, -2z, (44)

as well as

2_ 12
%zm(mr):————wk

2

2wl =w2r)+2, (v =ir)] @)

we obtain
1 ey
Cl 2‘1mk Yz kl (Y k)
1
G, =54,y —k* (—y—k). (46)

It is remarkable that the same expression ((37)=(41))
solves two quite different equations, namely (36) and (40).
When we insert (37) or (41) into (38) and (39) we obtain
(42) and (43) as it must be.

VI

For g-independence, i.e., for m=0 we have the axisym-
metric mode. In this case (23) and (24) become

THE AXISYMMETRIC MODE

o___1 s

B = gy o0 “7)
1 3Fg

0_ P

KT )

and from (41) and (37) we have in cylindrical coordinates

F‘po = — Ay, YOS kzZ(’)(yy2 —k? r)

=Ag v —k? }/Zl(\/y2 —k? r) cos kz

(49)

where (44), (46) have been used.

Since we want to describe a toroidal configuration, the
boundary is not given by r=r, (which would correspond to
a circular cylindrical waveguide in the z-direction) but by a

2y?
Y —m

2ymk
F —_
y22—m? ®

F =0.

279

5 (40)
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Fig. 2. Nearly circular cross section.
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Fig. 4. Nearly rectangular cross section.
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Fig. 3. D-shaped cross section. Fig. 5. Hollow cross section.
TABLE I
MEASURES, IN CENTIMETERS, AND EIGENFREQUENCIES OF EMPTY
TOROIDAL RESONATORS WITH CROSS SECTIONS SHOWN
IN FI1GS. 2-7
Fig k1 T, 2y r, z, Iy z4 T, 2, Te Zg lfinGHz D b0 s b1 &~
2 1 0.66 0 1.30 O 1 0.30 0.80 0.244 1.20 0.224} 6.8655 -1.1301 0.08675 -0.00977 ~0.26270 1.4393
3 1.5 8 0 9.8 O 8.6 1.16 8.3 1.07 9 1.02 | 8.5721 3.8741 0.7185 0.4405 1.3299 1.7971
4 1 0.66 O 1.30 O 1 0.26 0.82 0.26 1.20 0.26 (22,1389 0.3915 0.6705 -0.8457 -0.6288 +4.6412
5 1 0.66 0 1.50 O 1 ©0.18 0.80 0.26 1.20 0.16 119.6275 0.3404 0.6483 =-0.8469 -0.5614 4.1147
6 1.62 0.95 O integration, Atf =7/20, ¥y = 2w by = -0.01 —-0.2506 0.1805 0.5076 2.04925
°© cy = -0.015
7 1.62 0.95-0M integration, A‘f= w/20, Q. = 3%/2 cy =1 -0.2506 0.1805 0.5076 2.04925

function
f(r, z)=const.

(50)
This curve in the 7, z-plane (which rotates through ¢ around
the z-axis) must be closed. On its circumference the
boundary conditions must be satisfied. If we want to
describe a torus of major radius R with, e.g., circular cross
section of minor radius p, we have

f(r, 2)=(r—R)*+z%—p2 =0. (51)

This form is however not useful since (5) and (6) have to be
satisfied along this curve which does not coincide with a
coordinate surface. It is therefore expedient to describe
f(r, z) by the same functions by which the components of
F are expressed.

According to (5) the B-field lines are tangential to the
wall of the resonator. We take therefore the imaginary
parts of the constants A4,, in (49) and using cylindrical
coordinates agains we write (49), (42) or (47), and (43) or
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(48) for the first two modes (m=0, k=0, k,):
BY(r, 2) =y*[bo i (y7) Fey(vr)] +fyP —kE

b (2 =k r) +e i (v —k?r)|coskyz (52)
BY(r,2)=ky Y’ —k}

o (P =kir) +e (=K r)]sink,z (53)
BX(r, 2)=y?[boJy(vr) +eoYo(yr)] + (v —ki)

. [bIJO(\h(2 —k? r) +clYo(\/y2 —k? r)] cosk,z (54)

where J, and Y, are Bessel and Neumann functions, respec-
tively.

Now the differential equations for the field lines in the
r, z-plane are

dr _dz
=" (55)
Inserting for B? and B? from (53), (54) we may integrate
(55). There is however another possibility. We can insert
the imaginary parts of (47) and (48) into (55). This gives
o(8pr)  a(Bpr)
5 dr+ P (56)

Thus the lines B§r=const:D are identical in form with
the B?, B? field lines in the r, z-plane, i.e., identical with
the cross section of the toroidal resonator. In order to
obtain a toroidal resonator of major radius R and nearly
circular cross section of minor radius p, of the form (50) or
(51) we have to determine the constants by, ¢y, by, ¢,, D in
B? according to (52) from

dz=d(B2r)=0.

1
Z= —arecos
ky

) D—borszl(yr)—coyerl(yr)
yWy?—k? (blrJl(yy2 —k? r) —f—cerl(\/y2 —k,zr))
(57)

By choosing for a given k; a set of coordinates z, =z(r,),
i=1,---,5 we may generate various arbitrary cross sec-
tions. For five given values r, z, equation (57) yields five
homogeneous linear equations for the five unknown con-
stants D, b, ¢y, by, ¢;. In order that this system possess a
nontrivial solution, its fifth-order determinant must vanish.
The transcendental equation obtained yields the eigenvalue
y. The various zeroes ¥, represent the radial mode number
n. As in the usual theory (see Appendix) the eigenvalue y
and thus the eigenfrequency f=v/27 /€, is determined
by the measures (7,, z;) of the resonator. The equation has
been solved using a Hewlett-Packard table top computer
9825A. The results are summarized in Table I and the cross
sections obtained are depicted in Figs. 2-5. In the axisym-
metric case the boundary conditions are automatically
satisfied since B is tangential to the torus wall. Other cross
sections can also be found by introducing appropriate
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coordinate systems &, 8 and integrating (34), (35). Since
these equations are however not separable, a numerical
integration is necessary. This seems, however, not to be
necessary, since more modes than the two modes in (57)
allow to determine more parameters and to fix more z, =
z(r,)(i>5) so that nearly arbitrary cross sections may be
produced with more modes. If more modes are taken into
account then (5) is better satisfied. (In our case E,, is only
part of E,.)

VL

For m+0, the procedure described in the last chapter is
no longer possible. Since the curvature of the torus abolishes
the degeneracy of the cylindrical modes [5], [6] we now
have the following modes:

TaE NONAXISYMMETRIC CASE

m=0,1,2,-- ~,(q3)
where{ n=1,2,3,---,(r)
k=0,1,2,-- -,(z)

F.S‘

a
mkn® *mkn>

where the superscript s(a) indicates symmetry or antisym-
metry under reflection with respect to the equatorial plane
of the torus. From (41) to (43) a simple three-dimensional
solution is obtained (m=0,1, k=0, k,, n=1)

qu(", z,q)):yz[bOJl(yr)+cOYl(yr)]
(m=0,k=0)
+7‘/72"_k12 [blfl(‘/72“'k12”)
+c1Yl( yz—klzr)]cosklz
(m=0,k=k,)

+Y[_szJo(Yr)_‘YczYo(Yr)

+27,(4r)+ 2 7,(97) | coso
(m=1,k=0)
B(r.z,9) =k —k: b (¥ —Kir)
+e ¥y (y2 —kir)]sink,z

(m=0,k=k,)

(58)

- {%[b2J1(Y")+02Y1(Y”)] Sin*P}
(m=1,k=0)

' Bz(r’ z,q))=yz[bOJ1(yr)+coYl(yr)]
(m=0, k=0)

+(v2—k3) b o ¥? —KFr)
+c1Y1(\/yz —k? r)] cosk,z

(59)

(m=0,k=k,)
+y2[by i (yr) +e Y (vr)] cos @
(m=1, k=0). (60)
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Fig. 6. Toroidal waveguide, meridional cut at g, =2.
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Fig. 7. Toroidal waveguide, meridional cut at ¢, =37 /2.

Now we have to integrate

dr_ dz _rde
B. B, B, (61)

in order to find the field lines and the form of the wall of
the toroidal waveguide. We write (61) in the form

dz _rB, dr _rB,
dp B, d¢ B, (62)

in order to obtain z(gp), r(¢@). Integrating (62) for 0<p<
27, 2n<@p<4m,4r<@<67, etc., we may search how for a
fixed @, =const (meridional cut) the passing points of a
given field line (defined by its initial conditions r,, z,) can
be found. There are two types of field lines: a) field lines
meeting their first passing point after one or several revolu-
tions—we then have periodicity in ¢ after n-2« (i.e., after
n revolutions); b) field lines never meeting their first pass-
ing point through the meridional cut—these are just the
field lines in which we are interested because they form
asymptotically closed surfaces on which B, =0, so that
these surfaces can be identified with metallic surfaces
forming the wall of a toroidal waveguide. The cuts at
@, =0,p,=7/4, etc., exhibit the cross sections of the
torus. In order to follow a field line going around and
around, it is necessary to make an integration over a large
interval O0<@<n2s. For example, =50, we obtain 5]
crossing points of the field line in the meridional cut, e.g.,
at @, =0. Repeating the same procedure for ¢, =
7/4,7m/2,3m/2, etc., we obtain a series of meridional cuts.
Putting together these cuts we get a picture of the spatially
helically wound toroidal waveguide. (Such waveguides and
resonators are used in plasma physics, e.g., high beta
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stellarators.) As in the axisymmetric case the shape of the
torus cross section (i.e., the 7, z, and the constants b, ¢;)
determines y and thus the eigenfrequency. For small b,, ¢,
the eigenfrequency is nearly the same as in the axisymmet-
ric case. Computer facilities available here did not allow
the calculation of the distribution of the frequency due to
b, # ¢, #0. Facilities here did not permit integrations over

" such long intervals, but a 30-h run on a desk top Hewlett

Packard 9825A resulted in Figs. 6 and 7 on which the
helical rotation and slight modification of the cross section
can be seen. Toruses of cross sections hike this one shown
in Fig. 2 can be obtained for m+0 if one assumes that b,
and c, are very small, i.e., <0.01.

APPENDIX

Since the method to work with complex electromagnetic
fields (based partially on an earlier work of the author [4])
is unusual we will apply the method to a very well known
example. We consider a circular cylindrical waveguide [8]
in which the wave propagates into the z-direction (and not
in the g@-direction as in this paper). The solution of the
complex Maxwell equations (10), (11) is then given again
by (41)-(43). Decomposing the complex field F according

to (7) we obtain (y=w/E5Ho)

sz_yjr;(mr)exp(imtp+ikz) (63)
b= Y (T ) xp (o) ~E, (64

wr

£= " (TR ep (i k) (69

Br:——SJ”HWYZ—kzr)exp(im(p+ikz)~Eq, (66)
Bz:i%(ﬁ—k2)Jm(\/y2—kzr)exp(imq>+ikz). (68)

This solution satisfies Maxwell’s equations and corre-
sponds to the TE wave. (If Maxwell’s equations are solved
directly, one has E = —iJ; instead of —vJ,, etc.) (63)~(68)
satisfy at r=r; the boundary condition the TE wave. At
r=r,, it satisfies the boundary condition E, =0

B(r,)=0=E,(ry) or J;(yy>*—k?r)=0  (69)
which determines k. The other solution is
k . .
Eqp:—%—Jm(\/yz—kzr)exp(zmq)+zkz) (70)

B,=— %J,;(\/VZ —k2r)exp(imo+ikz)~E, (71)
Er:,'k,]r’n(mr) exp(ime+ikz)

2
B=— nmy Jm(\/yT:/:zr)exp(imtp+ikZ)~E¢ (73)

wr

E,=(y? —kz)Jm(mir) exp (im @+ikz)
B.=0

(72)

(74)
(75)

and corresponds to the TM wave. At r=r,, it satisfies the
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boundary condition E, =0

B(ry)=0=E,(r,) or J,(Vy*—k?r,)=0. (76)

We consider now the case m=0. Comparing (64), (66),

(68), (71), (73), and (75) with (52)-(54) we find that the

latter solution corresponds to a superposition of the TE

parts of B, and B, and the TM part of B,. We use,

however, only the last term giving from rB_, =const for the
“mode” k=0

(77)

(correspohding to a waveguide with cross section = const)
and for k=1 (TM, mode) we obtain

rJl(\/y2 -1 r) cos z=const

rJy(yr)=const

(78)

which describes the surfaces on which B, =E_ =0 and into
which metallic walls may be inserted without disturbing the

field patterns.
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Analysis and Design of TE,,-to-HE
Corrugated Cylindrical Waveguide Mode
Converters

Abstract— A theoretical parametric study is given of a TE;-to-HE;
mode converter consisting of a section of cylindrical corrugated waveguide
with varying slot depth. The analysis makes use of modal field-matching

" techniques to determine the scatter matrix of the mode converter from
which we deduce its propagation properties. It is shown that a mode
converter consisting of only five slots achieves a return loss better than 30
dB over the band 2.7<<ka<3.8 (where a is the internal radius of the
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waveguide) with the HE ;; mode in the balanced condition at ka=2.9. The
predicted results are in very good agreement with experimental data,

I. INTRODUCTION

N DESIGNING corrugated horns which use a section
of cylindrical corrugated waveguide at the input, it is
necessary to study the transition from a smooth-walled
cylindrical waveguide supporting the TE,;; mode to a cor-
rugated cylindrical waveguide where the HE |, hybrid mode
is supported. With the corrugated surface represented by
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