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Toroidal Resonators and Waveguides of
Arbitrary Cross Section

FERDINAND CAP

A bstract—After introducing a new method to solve Maxwell’s equations
using a complex electromagnetic field veetor F, a rotational coordinate

system $, 0, rp is introduced. In this conrrfirmte system, the field vector

components F$, F@ may be expressed by FT. ‘rbis component can be

obtained from a trvo-dimensionaf Hehnholtz equation: Specif ying f, 8 by

cylindrical coordinates r, z the complex Maxwell equation curl F= yF is

solved for the axisymmetric case ( ~/i3T = O) and for the nonsymmetric

case. The differential equations for magnetic field lines are solved and

surfaces on which the normal component of B and the tangential compo-

nents of E vanish are recognized as metallic wafls of toroidal resonators of

various arbitrary cross sections. In the Appendix the results of the new

method are compared with well known results for circufar cylindrical

waveguides.

I. INTRODUCTION

T OROIDAL RESONATORS having a high Q-value

are of interest not only for microwave engineering, but

also for light pipes and for the heating of toroidal plasmas

by low-frequency electromagnetic waves. We have recently

published solutions to Maxwell’s equations for a torus with

circular cross section [1], [2]. On the other hand it seems to

be of interest to investigate also toroidal resonators and

curved waveguides of arbitrary, e.g., elliptic or triangular

cross section. Such cross sections are of interest, e.g., in

plasma physics. In order to solve Maxwell’s equations for a

torus of arbitrary cross section we first present a new

method to solve Maxwell’s equations and the vector

Hehnholtz equation for arbitrary rotational coordinates.

The new method consists of three steps: 1) a complex

electromagnetic field is defined in order to simplify

Maxwell’s equations; 2) for rotational coordinate systems

describing three-dimensional toroidal configurations of ar-

bitrary cross section, Maxwell’s equations are solved by

expressing two components of the complex electromagnetic

fields by the third component; and 3) from the vector

Helmholtz equation for the field first a fourth-order equa-

tion for the third field-component is derived which is then

reduced to a second-order scalar Helmholtz equation. This

equation is then solved for various practical examples.

II. COMPLEX SIMPLIFICATION OF MAXWELL’S
EQUATIONS

For a time-dependence - exp (iut) Maxwell’s equations

may be written for vacuum

curl E= iaB (1)
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curl B=~op OitiE

divE=O

divB=O.

For waveguides and empty resonators

boundary conditions

B~=O

where B. is the magnetic component normal

wall, and

E,=O

(2)

(3)

(4)

we have the

(5)

to the metallic

(6)

where Et is the electric component tangential to the highly

conducting wall. Introducing a complex electromagnetic

field F by

F= E–iB/% (7)

and adding (1) +(2) as well as (3)+(4) we may write

Maxwell’s equation in the compact complex form

curl F= uGF (8)

divF=O. (9)

(By the way, if F is replaced by B, these equations are

identical with the equations describing force-free plasma

containment [4]).

A reviewer who has been so kind to evaluate this paper

has drawn our attention to the fact that the use of a

complex field vector were not new. It had been discussed in

Stratton, Electromagnetic Theo~, a book not available here

in Innsbruck. A second reviewer has been so kind to

suggest the use of bicomplex variables, It is the feeling of

the author that this could yield a more flexible and elegant

way but would give the same results. Anyway, both re-

viewers are thanked for their remarks.

Due to (9) we may make the ansatz

F=curl P+co&P (10)

divP=O (11)

where the complex vector P is nothing else than

—iA /m, where A is the usual magnetic vector poten-

tial. It is easy to show that E, B, F, and P satisfy a vector

Helmholtz equation

v 2F+u2(OpOF=0 (12)

v 2P+c&poP=o. (13)

This is, however, not of interest for the following.
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III. ROTATIONAL COORDINATE SYSTEM

We now introduce three-dimensional curvilinear orthog-

onal rotational coordinates f, 8, p related to Cartesian co-

ordinates by

X=g(.f, o)cosq

y=g(~, d)sinq

Z=l(g, e). (14)

See Fig. 1.

The functions g($, 0), 1($,0) will be specified later. They

describe the arbitrary cross section of the torus. The system

f, 0, rp is obtained by rotation around the z-axis of the

two-dimensional system ~, d. rp is the rotation angle. The

scale factors are given by

‘+a’+(%)’+(%)’=(w’+(%)’

‘~=(%)’+(w’+(%)’=(%

‘$=(%)2+(%)2+(%)2=’2

(15)

2

()

al 2

‘%

(16)

(17)

According to Zagrodzinski [3] we now assume that the

toroidal cross section can be generated by conformal map-

ping of the x, z-plane on the ~, d-plane or that ~+ id=~(g

+ il) =f(x + iz), such that g and 1 satisfy the Cauchy–

Riemann equations

We then have from (15), (16)

h,=h,=(f)’+(~)’=,’.

(18)

(19)

Furthermore we obtain from (18), (19) the results

(1“)2+(%d2+(H32=1(grad 1)2= ~ ~

(20)

(grad hv)’=(gradg)’=l (21)

and

v2hv=v2g=g-1. (22)

Since Maxwell’s equations are linear and since their

solution must be periodic in rp, we assume for all compo-

nents of F a p-dependence - 2~A~ exp (in cp). By combin-
ing linearly the three components of (8) we obtain in

analogy to [3] the following equations for the first two

components:

1

-(

aFqg aFvg
— –g~G~Ft= Mh ‘im d~

)
(23)

z—

t

4-?@..-

Fig. 1. Rotational coordinates.

and’

( aFwg aFpgF@.& —+ ’wGGj-g-‘m ae
)

(24)

where ME g2u2cOp0 – m 2 and where g, h are given by the

form of the arbitrary toroidal cross section. We are thus

able to calculate Ft and FO, if FP is known. If F< and Fe are

inserted into the third component equation of (8) or into

(9), a very complicated equation of second order contain-

ing only Fq can be derived (see, e.g., (40)). This equation is

not of the form of a scalar Hehnholtz equation. There is,

however, a more simple way to find F9.

IV. HELMHOLTZ EQUATION FOR FT.

According to [3] we consider the azimuthal component

Fw and decompose it into Cartesian components

FW=–FXsinq+FYcosq. (25)

Application of v 2 to (25) yields

V2Fv=–(ti2cOp0 +g-2)FW

( aB )–2g-2 ~cosp+~sin~ . (26)
aq ap

Differentiating (25) with respect to T we obtain

aF, _ aq . aFy—_ ——
av ap ‘ln~+wcOs~–~

(27)

where

F,= FXcosq-i-FYsinrp (28)

is the radial component in cylinder coordinates r, z, q. On

the other hand

ag _ aF aF,

‘cosrp+Asin~+Fp
~–aq ay

(29)

so that (26) may be written

(~g’ V 2F+u2cOpOFv –g–2Fv )=-imFr (30)

Similarly application of v 2 on (28) yields

~g2(V2F+ti2cOpO~ -g-2~)=imFq.r (31)
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Elimination of F, and use of v 2 = v ~ – g -Zmz yields an According to Section IV, this equation must have the

equation of fourth order for FP same solution as (8) and (36) if the constants Cl and C2 are

[( V;–g –Zmz +a2copo —g –2
)

chosen appropriately. To see this we solve (8) in cylindrical

coordinates:

.(v~-g-zm’+u’copo-g-z)

1
‘9=A.~e’m’+rkz[-$z.(~r)

–4g-4m2 F,=~ (32)

where –yz~(/wr)] (41)

“=i-[+(’a++(’w ’33)‘=Amkie’”’+’k’[+~zm(-r)
Thus, according to (32) F.= Cl Fm+ + C2F0- is determined +kZ;(/~r)l (42)

by the two scalar Hehnho~tz equ~tions - r
~=Am,eim~+i~Z[(y2-k2)Zm(/~~)]. ‘ (43)

v ;Fv+ +u2copoFq+ –g-z(m+l)2Fw+ =0 (34)

v ;Fq– + u2copoFv– –g-z(m–l)2Fq- =0 (35) Identifying (41) with (37) and using

and by the boundary conditions (5), (6). .%J/P~)=J=L
The constants Cl, C2 must be determined in such a way

that FT given by (34), (35) and F&, F. given by (23), (24) as well as
satisfy (8), (9).

V. CYLINDRICAL COORDINATES

specify

coordi-

To solve the equations (34)–(35) we now must

the coordinate system. If we chose quasitoroidal

natesp,9, cpbyg=Rq, h=Rp, l= Rpsin6, q=l —pcos8we

obtain a torus with exactly circular cross section and we

come back to the problem investigated in [1], [2]. Since

equation (34) is not separable in these coordinates even for

m = O [4] we again have to use series approximations. We

therefore choose now a coordinate system in which (34) is

separable. In cylinder coordinates r, z, q we have &= r,

8=z, rp=rp and g=r, l=z, h= 1. For the z-dependence we

choose exp ( ikz ). Then (34), (35) read

. [Zm+l(l=r)+ %l(l’=r)] (45)

we obtain

(46)

It is remarkable that the same expression ((37)-(41))

solves two quite different equations, namely (36) and (40).

When we insert (37) or (41) into (38) and (39) we obtain

(42) and (43) as it must be.

VI. THE AXISYMMETRIC MODE

(36) For q-independence, i.e., for m= O we have the axisym-

metric mode. In this case (23) and (24) become
where yz = @2COpo. The solution FT = CIFP+ + C2Fq– is

given by @ = – 1 ~F9g—— (47)

qr)=[wm+l

hgy i313
(/~r)+C2Zm_, (@GPr)l.

/J

(37) (48)

Here the 2P are cylindrical functions. Sums over

are omitted. From (23) and (24) we obtain

1

[––

drFv arFP
F,=

r2y2 _m2 ‘m dr ‘ry az 1
[ i3rFv arFq

F== 1 _ _
2 Z_mz

ry 1‘m az ‘ry ar

m and k
and from (41) and (37) we have in cylindrical coordinates

(38)
F:= –Ao~ycoskzZ~(/~r)

‘Ao/c~YZ] (pr) cos kz (49)

(39) where (44), (46) have been used.

Since we want to describe a toroidal configuration, the
Inserting (37)–(39) into (8) we find that the r and boundary is not given by r= r. (which would c&respond to

z-components are identically satisfied, but the rp-component a circular cylindrical waveguide in the z-direction) but by a

yields for a z-dependence exp(ikz) (’ = d/dr)

F#+~FJ+Fw(y2 –k2)+~Fq(l–m2)–
2m2

~+
2ymk

2FP–
2y2

2FV=0. (40)
yzrz –mz r yzrz–m y2r2 –m
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Fig. 2. Nearly circular cross section.
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Fig. 4. Nearly rectangular crosssection,
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Fig. 3. D-shaped crosssection.
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Fig. 5, Hollow crosssection,

TABLE I
MSASURSS,IN CENTIMETERS,ANDEIGENFREQUENCIESOF EMPTY

TOROIDAL RESONATORS WITH CROSS SECTIONS SHOWN

IN FIGS. 2–7

Flg kl r, 21 r2 Z2 r3 Z3 r4 z4 r5 ‘5 f inGHz D b. co
bl l?-

21 0.66 0 1.30 0 1 0.30 0.80 0.244 1.20 0.224 6.8655 -1.1301 0.08675 -0.00977 -0.26270 1.4393

3 1.5 8 0 9.8 0 8.6 1.16 8.3 1.07 9 1.02
I

8.5721 3.8741 0.7185 0.4405 1.3299 1.7971

41 0.66 0 1.30 0 1 0.26 0.82 0.26 1.20 0.26 22.1389 0.3915 0.6705 -0.8457 –0.6288 +4.6412

51 0.66 0 1.50 0 1 0.18 0.80 0.26 1.200.16 119.6275 0.3404 0.6483 -0.8469 -0.5614 4.1147

6 1.62 0.95 0 integration, d? =li/20, ~. = 2’ii

1

b2 = -0.01 -0.2506 0.1805 0.5076 2.04925
C2 = -0.015

7 1.62 0.95-0,0! lntegrat~on, d~ = ‘T/20, ~0 = 3ii/2 C,=l -0.2506 0.1805 0.5076 2.04925

function

~(r, z) =const. (50)

This curve in the r, z-plane (which rotates through p around

the z-axis) must be closed. On its circumference the

boundary conditions must be satisfied. If we want to

describe a torus of major radius R with, e.g., circular cross

section of minor radius pOwe have

f(r, z)~(r–R)2+z2–p~=0. (51)

This form is however not useful since (5) and (6) have to be

satisfied along this curve which does not coincide with a

coordinate surface. It is therefore expedient to describe
~(r, z) by the same functions by which the components of

F are expressed.

According to (5) the B-field lines are tangential to the

wall of the resonator. We take therefore the imaginary

parts of the constants AO~ in (49) and using cylindrical

coordinates agains we write (49), (42) or (47), and (43) or
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(48) for the first two modes (m=O, k=O, k,):

B:(r,z)=y2[boJ1(yr) +coY,(yr)]+y/~

‘[~,J,(/m~)+c,y, ((pr)]cosk,z (52)

“[’1’,(-’)+’lyl(-’)lsi”’l’ (’3)
B;(r, z)=yqbo.lo(Yr)+ coYo(Y~)]+(Y2–~?)

[b,Jo(er)+c,yo(/wr)]c osk,z (54)

where JP and YP are Bessel and Neumann functions, respec-

tively.

Now the differential equations for the field lines in the

r, z-plane are

(55)

coordinate systems & 0 and integrating (34), (35). Since

these equations are however not separable, a numerical

integration is necessary. This seems, however, not to be

necessary, since more modes than the two modes in (57)

allow to determine more parameters and to fix more z, =

Z( r, )( i > 5) so that nearly arbitrary cross sections may be

produced with more modes. If more modes are taken into

account then (5) is better satisfied. (In our case Eq is only

part of Et.)

VI. THE NONAXISYMMETRIC CASE

For m+ O, the procedure described in the last chapter is

no longer possible. Since the curvature of the torus abolishes

the degeneracy of the cylindrical modes [5], [6] we now

have the following modes:

[

m=0,1,2,. ., >(9)

F;~n , F:~~ , where n=l,2,3, ””., (r)

/2=0,1,2, . . ,(’)

Inserting for B; and B: from (53), (54) we may integrate where the superscript S(a) indicates symmetry or antisym-

(55). There is however another possibility. We can insert metry under reflection with respect to the equatorial plane

the imaginary parts of (47) and (48) into (55). This gives of the torus. From (41) to (43) a simple three-dimensional

i3(B$’r) a(B$r)
solution is obtained (m=O, 1, k=O, kl, n= 1)

ar dr+ az dz=d(B~r)=O. (56) BT(r, z,q)=y2[b.Jl(yr) +cOYl(yr)]

Thus the lines B~r= const =D are identical in form with

the B;, BzOfield lines in the r, z-plane, i.e., identical with

the cross section of the toroidal resonator. In order to

obtain a toroidal resonator of major radius R and nearly

circular cross section of minor radius POof the form (50) or

(51) we have to determine the constants b,, co, bl, c1, D in

B: according to (52) from

1z = —, arccos
k,

“[ D–bory2J1(yr) –coy2rYl(Yr) 1y/=(%rJl(/~r) +c,rY,(/%r)) “

(57)

By choosing for a given k} a set of coordinates z,= z(ri),
i= l,... ,5 we may generate various arbitrary cross sec-

tions. For five given values r,, z, equation (57) yields five

homogeneous linear equations for the five unknown con-

stants D, b,, co, bl, cl. In order that this system possess a

nontrivial solution, its fifth-order determinant must vanish.

The transcendental equation obtained yields the eigenvalue

y. The various zeroes y. represent the radial mode number

n. As in the usual theory (see Appendix) the eigenvalue y

and thus the eigenfrequency f = y/27Tm is determined

by the measures (r,, Zi) of the resonator. The equation has

been solved using a Hewlett-Packard table top computer

9825A. The results are summarized in Table I and the cross

sections obtained are depicted in Figs. 2–5. In the axisym-

metric case the boundary conditions are automatically

satisfied since B is tangential to the torus wall. Other cross

sections can also be found by introducing appropriate

(m= O,k=O)

+y~~[blJ1(~~r)

+clY1(/~r)]cosklz

(m= O,k=kl)

[
+y –yb2Jo(yr) –yc2YO(yr)

1+~J1(yr)+~Y1(yr) COSCP

(m=l, k=O) (58)

P= W,J1(WWB,(r, z,rp)=kl y

‘clyl(i~r)]sinklz

(m= O,k=k,)

-(~[~2J,(yr)+c2Y,(yr)] sinq)

(m=l, k=O) (59)

BZ(r, z,rp)=y2[bOJ1(y r)+c01’l(yr)]

(m= O,k=O)

+(y2–k; )[~,Jo(/=r)

+clY1(~~r)] cosklz

(m= O,k=kl)

+y2[b2J, (yr)+c2Y1(yr)] coscp

(m=l, k= O). (60)
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z

I

l--f+0.95 r

Fig. 6. Toroidal waveguide, meridional cut at rpo = 27r.

z

I
Fig. 7. Toroidat waveguide, meridional cut at rpo = 3fi\2,

stellarators.) As in the axisymrnetric case the shape of the

torus cross section (i.e., the r,, z, and the constants b,, c~)

determines y and thus the eigenfrequency. For small b2, C2

the eigenfrequency is nearly the same as in the axisymmet-

ric case. Computer facilities available here did not allow

the calculation of the distribution of the frequency due to

b2 # C2# O. Facilities here did not permit integrations over

such long intervals, but a 30-h run on a desk top Hewlett

Packard 9825A resulted in Figs. 6 and 7 on which the

helical rotation and slight modification of the cross section

can be seen. Toruses of cross sections like this one shown

in Fig. 2 can be obtained for m # O if one assumes that b2

and C2are very small, i.e., <0.01.

APPENDIX

Since the method to work with complex electromagnetic

fields (based partially on an earlier work of the author [4])

is unusual we will apply the method to a very well known

example. We consider a circular cylindrical waveguide [8]

in which the wave propagates into the z-direction (and not

in the cp-direction as in this paper). The solution of the

complex Maxwell equations (10), (11 ) is then given again

by (41)-(43). Decomposing the complex field F according

to (7) we obtain (y= um)

Now we have to integrate

(61)

in order to find the field lines and the form of the wall of

the toroidal waveguide. We write (61) in the form

(62)

in order to obtain z(q), r(q). Integrating (62) for O<p<

2r,2r G~G4T,4r Grp G6r, etc., we may search how for a

fixed TO= const (meridional cut) the passing points of a

given field line (defined by its initial conditions r,, Z,) can

be found. There are two types of field lines: a) field lines

meeting their first passing point after one or several revolu-

tions— we then have periodicity in v after n 0277 (i.e., after

n revolutions); b) field lines never meeting their first pass-

ing point through the meridional cut— these are just the

field lines in which we are interested because they form

asymptotically closed surfaces on which B. = O, so that

these surfaces can be identified with metallic surfaces

forming the wall of a toroidal waveguide. The cuts at

% = O, TO= 7T/4, etc., exhibit the cross sections of the

torus. In order to follow a field line going around and

around, it is necessary to make an integration over a large

interval O< rp<n2n. For example, n =50, we obtain 51

crossing points of the field line in the meridional cut, e.g.,

at qO = O. Repeating the same procedure for cpO=

IT/4, ~/2, 37r/2, etc., we obtain a series of meridional cuts.

Putting together these cuts we get a picture of the spatially

helically wound toroidal waveguide. (Such waveguides and

resonators are used in plasma physics, e.g., high beta

EP=–y.1~(/y2 -/c2r)exp (imrf+ikz) (63)

Bp = imh
~r J.(~r)exp (im~+ikz)-% (64)

E,–lmy
r J.(~r)exp(im~+ikz) (65)

B,=-~JL(~r)exp( imq+ikz)-E P (66)

EZ=O (67)

BZ=i~(y2–k2)J~( ~~r)exp(imp+ikz). (68)

This solution satisfies Maxwell’s equations and corre-

sponds to the TE wave. (If Maxwell’s equations are solved

directly, one has Eq = – ~; instead of – yJ~l, etc.) (63)-(68)

satisfy at r= r. the boundary condition the TE wave. At

r= r., it satisfies the boundary condition EZ = O

B,(rO)=O=Eq(rO) or J~(~y2–k2r)=0 (69)

which determines K. The other solution is

E,=–& ~ J.(~r)exp(imq+ikz) (70)

Bq=-~J:(i~r)exp( imq+ikz)-E, (71)

E,=iti~(~~-r)exp (imp+ikz) (72)

B,= _ ‘y2
~J.(=r)exp(im~+ikz)-~, (73)

17z=(y2-k2)Jm(/~”2 r)exp(imrp+ikz) (74)

BZ=O (75)

and corresponds to the TM wave. At r= r., it satisfies the
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boundary condition EZ = O

Br(ro)=O=E,(ro) or J.(~~rO) =0. (76)

We consider now the case m =0. Comparing (64), (66),

(68), (71), (73), and (75) with (52)-(54) we find that the

latter solution corresponds to a superposition of the TE

parts’ of B, and B= and the TM part of Bq. We use,

however, only the last term giving from rBv = const for the
“mode” k= f)

r~l ( yr ) = const (77)

(corresponding to a waveguide with cross section r=const)

and for k= 1 (TMOI mode) we obtain

~~1(~~).osz=const (78)

which describes the surfaces on which B,= Ew = O and into

which metallic walls may be inserted without disturbing the

field patterns.
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Analysis and Design of TE1l-to-HE1l
Corrugated Cylindrical Waveguide Mode

Converters

GRAEME L. JAMES

A bstract— A theoretical parametric study is given of a TE ~l-to-HE II wavegnide) with the HE,1 mode in the balanced condition at ka = 2.9. The

mode converter consisting of a section of cytindricaf corrugated wavegnide prdlcted resssfts are in very good agreement with experimental data.

with varying slot depth. The anatysis makes use of modat field-matching

“ tecluiaues to detersnine the scatter matrix of the mode converter from I. INTRODUCTION
which we deduce its propagation properties. It is shown that a mode

converter consisting of only five slots achieves a return loss better than 30 I N DESIGNING corrugated horns which use a section

dB over the band 2.7 <ka< 3.8 (where a is the intemaf radius of the of cylindrical corrugated waveguide at the input, it is
necessary to study the transition from a smooth-walled
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cylindrical waveguide supporting the TE, ~ mode to a cor-
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Epping, N.S.W. 2121,Australia. is supported. With the corrugated surface represented by
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